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Abstract

We study price aggregation methodologies applied to crypto-currency prices with quotations frag-

mented on different platforms. An intrinsic difficulty is that the price returns and volumes are heavy-

tailed, with many outliers, making averaging and aggregation challenging. While conventional meth-

ods rely on Volume-Weighted Average Prices (called VWAPs), or Volume-Weighted Median prices

(called VWMs), we develop a new Robust Weighted Median (RWM) estimator that is robust to price

and volume outliers. Our study is based on new probabilistic concentration inequalities for weighted

means and weighted quantiles under different tail assumptions (heavy tails, sub-gamma tails, sub-

Gaussian tails). This justifies that fluctuations of VWAP and VWM are statistically important given the

heavy-tailed properties of volumes and/or prices. We show that our RWM estimator overcomes this

problem and also satisfies all the desirable properties of a price aggregator. We illustrate the behavior

of RWM on synthetic data (within a parametric model close to real data): our estimator achieves a

statistical accuracy twice as good as its competitors, and also allows to recover realized volatilities

in a very accurate way. Tests on real data are also performed and confirm the good behavior of the

estimator on various use cases.
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1 INTRODUCTION

1 Introduction

Context. Digital finance has experienced an unprecedented boom in the last decade, with the emer-

gence of digital assets and smart contracts that can be traded in a decentralized (using a Blockchain

protocol) or centralized manner, see [Arslanian, 2022] for an overview. As opposed to traditional finance

where each given asset is quoted and traded on a centralized stock exchange, information of traded

prices/volumes1 and quotes/full order books is scattered in the case of digital finance. This makes the

task of "market consensus" price calculation difficult. Reference prices are essential for the settlement

of financial derivatives based on digital assets, or in the net asset value calculation of exchange-traded

funds.

Our work tackles the problem of information aggregation to obtain reference prices based on past traded

prices/volumes, by developing a new methodology (called RWM for Robust Weighted Median) which we

prove to be more robust and efficient than existing ones. Theoretical confidence bounds are derived to

assess the gain in statistical accuracy, and these results are completed by numerous experiments illus-

trating the outperformance of RWM.

State of the art for the methodologies. Consider the situation where the traded price and volume

data (Pi ,Vi )n
i=1 of a digital asset is collected from several exchanges on a short time window (typically

a minute), and for which a "market consensus price" has to be provided at that time. Following the ar-

guments of [Paine and Knottenbelt, 2016], an aggregation rule should enjoy various characteristics such

as: Relevance, Timeliness, Manipulation Resistance, Martingale Property, Verifiability, Replicability, Sta-

bility, Parsimony. Our RWM methodology enjoys all these properties as discussed in Section 2.3.

A first methodology consists in simply averaging prices from different exchanges, yielding the aggregated

price

1

n

n∑
i=1

Pi .

It is computed this way by, among others, [Vinter, 2021] to obtain prices at the minute scale, while an

extra average in time is added to obtain hourly or daily prices (Time Weighted Average Prices, TWAPs in

short). Although simple, this volume-independent aggregation is questionable: indeed, it is sensitive to

market manipulations that could be performed by trading automata capable of executing a large number

of orders with tiny volumes. This explains why aggregation rules that compute weighted averages with

higher weights on prices with higher volumes have been investigated. A first well-known methodology

is based on the Volume-Weighted Average Price (VWAP), which consists in averaging the traded prices

with a weight equal to the traded volume:

�VWAPn :=
∑n

i=1 Vi Pi∑n
i=1 Vi

. (1.1)

This methodology is used by, among others, [Nasdaq, 2022] to obtain the Nasdaq Crypto Index (NCI) and

by FTSE Russell [FTSE Digital Asset Research, 2022] to compute Digital Asset Reference Prices. However,

it is well-known that empirical means are very sensitive to extreme values [Ronchetti and Huber, 2009],

and thus, the above approach, as it is, is not robust to outliers. Therefore, [Nasdaq, 2022] and

1i.e. number of contracts
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1 INTRODUCTION

[FTSE Digital Asset Research, 2022] apply an extra level of outlier management: in [Nasdaq, 2022], the

weights in the VWAP are modified to account for abnormal prices, abnormal volatilities or abnormal vol-

umes, with several hyper-parameters to set that do not make the method parsimonious ; in

[FTSE Digital Asset Research, 2022], data is discarded from the raw data set based on exchange-level and

trade-level outlier detection, with thresholds that once again depend on hyperparameters to tune.

Another well-known methodology is based on the Volume-Weighted Median price (VWM), which is com-

puted as a usual median but with each price data weighted by its volume:

V̂WMn := inf

{
p :

∑n
i=1 Vi 1{Pi≤p}∑n

i=1 Vi
≥ 1

2

}
. (1.2)

To the best of our knowledge, this approach was publicly used for the first time by the Federal Reserve

Bank of New York [Federal Reserve Bank of New York, 2015] on interest rates, suggesting to use VWM in

order to be more robust to outliers; it is also at work at the Chicago Mercantile Exchange

[Paine and Knottenbelt, 2016] [CF Benchmarks, 2022b] [CF Benchmarks, 2022a] and Bloomberg

[Gallagher, 2018]. An example is the Bitcoin Reference Rate (BRR) computed every hour by CME: the

data set is made of 12 partitions of data over 5-minute timespans, on each partition a VWM is computed,

and then the 12 results are averaged. Interestingly, this approach has only a few hyper-parameters to

tune.

In Subsection 2.2 which is dedicated to the theoretical statistical analysis of estimators including �VWAPn

and V̂WMn , we will see that both methodologies suffer from a large statistical uncertainty, intrinsically due

to the heavy tail characteristics of the data under consideration. This justifies the development of a new

price aggregation methodology called Robust Weighted Median (RWM), with high accuracy properties, see

Subsection 2.3.

State of the art for statistical analysis. Beyond the useful applications in digital finance, our work

brings novelties on the theoretical side for the study of weighted empirical means and medians, in par-

ticular the convergence in distribution of their re-normalized error (Central Limit Theorem, as n →+∞)

and non-asymptotics error bounds (when n is fixed). Let us discuss this by putting into perspective the

existing results from the literature in statistics.

There is a long history on the measure of the centrality of a distribution, and on the debate between

mean and median. According to [Farebrother, 2001], in 1883, Galton was the first to employ a median

value instead of a mean value, he justified his preference by analogy with a simple majority voting pro-

cedure. At the same time, Edgeworth also used the median rather than the mean, as a measure of dis-

tribution centrality. During the XXth century, the mean became more important, probably because of

its popularity in the society. However, in the seventies, robust statistics were developed to better ac-

count for extreme values and outliers in statistical procedures, see the book by Huber and Ronchetti

[Ronchetti and Huber, 2009]. Nowadays, statistical procedures accounting for robustness are a must-

have.

Without weighting, the theoretical study of empirical mean and empirical median is a standard topics:

see [Boucheron et al., 2013] about concentration inequalities around the expectation of the em-

pirical mean computed over n data points (under various distribution assumptions that will be

detailed later), or [Reiss, 1989, Chapter 3]-[Boucheron and Thomas, 2012] about concentration in-

equalities of the empirical median and quantiles. For refined (non-weighted) quantile estimations,
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1 INTRODUCTION

see [Hyndman and Fan, 1996].

We should mention that in order to compute an expectation, other robust mean estimation proce-

dures could be used, together with nice concentration inequalities: such methods include median-

of-means [Devroye et al., 2016], trimmed means [Lugosi and Mendelson, 2019], or the Catoni esti-

mator [Catoni, 2012]. These estimators have excellent concentration properties even if the data

is heavy-tailed; on the other hand, to achieve this, each estimator has to be defined according to

a confidence level on which its accuracy is to be guaranteed, without any hint to how the esti-

mator behaves outside this probable event. In addition, the amount of data n required to ensure

the validity of the above accuracy confidence bounds is usually well over several hundreds, which

is not compatible with the application on cryptocurrency market (with data aggregation at the

minute time scale). These computational considerations for Monte Carlo methods are discussed

in [Gobet et al., 2022].

When weighting is incorporated into the estimators as it is the case in (1.1)-(1.2), we can refer to

[Glynn et al., 1996], which studies the asymptotic normality of empirical quantiles computed us-

ing importance sampling methods (a case where E [V ] = 1). For a more general case and non-

asymptotic results, to the best of our knowledge such a theoretical study for assessing estimator

errors has not yet been conducted. Additionally, the theoretical results on the weighted estima-

tors �VWAPn and V̂WMn developed in Subsection 2.2 will show that their statistical fluctuations are

directly impacted by the tail-heaviness of the distributions of V ·P and V respectively. Yet the latter

appear to be heavy-tailed in the cryptocurrency market, see Section 5 for details, i.e. their quantile

functions diverge in such a way that the underlying probability distributions may not have a finite

variance. In other words, it is hopeless to expect good statistical properties of �VWAPn and V̂WMn on

crypto asset data, although the statistical behavior of V̂WMn is presumably slightly better than that

of �VWAPn .

Contributions. Our contributions are threefold.

First, we study in a general setting of random weights denoted by W (instead of weights V ) the proper-

ties of weighted averages, weighted medians (as requested by applications) and we also include, for

the sake of generality, weighted quantiles. This is achieved on various tail assumptions on W and

W ·P ; namely we consider heavy tails, sub-gamma tails, and sub-Gaussian tails. Results on estima-

tion errors include asymptotic normality, as n→+∞ (Central Limit Theorem in Theorem 2.2), and

non-asymptotic confidence bounds (concentration inequalities in Theorems 2.3, 2.4, 2.5), which

fit well in the setting of a small number n of points, similar to the one we can meet in practice

(typically n = 100 data points over a 1-minute time window). These main theoretical results clearly

show the role of the assumptions on the distribution tails, regarding the accuracy of the confi-

dence interval (CI in short); Table 1 summarizes the behavior of the CI width under the various tail

assumptions.

Second, in view of previous properties, we design a new aggregated estimator called RWM which en-

joys good statistical properties: it fulfills all of the desirable characteristics mentioned in the in-

troduction. In a nutshell, this estimator is based on Weighted Medians but with a weight equal to

the log-volume (W = log(1+V ) up to a scaling defined later). Observe that the estimator RWM
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behaves like the VWM for small volumes (since log(1+V ) ∼ V ), but in addition, it has extra ro-

bustness properties with respect to extreme volumes and prices. Actually, since V is heavy-tailed,

W has sub-gamma tails and thus, the final estimator RWM exhibits qualitatively smaller statistical

fluctuations compared to VWM and VWAP, see Table 1.

Last, we illustrate the aggregation procedure on synthetic and real data (see Sections 4 and 5 respec-

tively), and compare it with VWAP and VWM. In 90 to 95% of the cases, all estimators behave simi-

larly but in the presence of strong outliers, RWM behaves remarkably better, see Figure 1. We also

highlight that RWM is the only estimator that permits to accurately estimate the realized volatility

(RV), despite the possible large number of outliers in prices and volumes in the data time-series.
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Figure 1: Aggregated volume weighted price estimation on simulated data surrounding an efficient price
generated every minute during one day using V̂WMn (blue), �VWAPn (orange) and R̂WMn (green). See Section
4 for details.

Organization of the paper. This paper is organized as follows. The asymptotic and non-asymptotic

statistical fluctuations of the weighted average and quantile estimators are studied in Section 2.2. The

estimator RWM is presented in Section 2.3 and the real-data are presented in Section 3. The perfor-

mance of our estimator is illustrated on simulated data (Section 4) and on real cryptocurrency market

data (Section 5). Technical proofs are postponed to the Appendix.

2 Main theoretical results

This section is mainly devoted to the theoretical study of statistical fluctuations of empirical weighted

means and medians, for general weigths W (not necessarily equal to the volume V as in (1.1) and (1.2))

since below, we will choose W as a specific function of V . In addition, for the sake of generality of our

study, we also investigate the case of weighted quantiles. The purpose of this section is to provide a
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2.1 Probabilistic setting 2 MAIN THEORETICAL RESULTS

theoretical foundation for assessing statistical fluctuations of aggregate prices in order to propose an

accurate and robust solution.

First in Subsection 2.1, we define our stochastic framework. Then in Subsection 2.2 we state and prove

convergence results of weighted means/medians/quantiles: asymptotic fluctuations as the number of

data n → +∞ (Central Limit Theorem) and non-asymptotic deviation arguments. Refined estimators

will be defined and studied in the Subsection 2.3.

2.1 Probabilistic setting

To prepare the estimators study, we need to define a few probabilistic notions. Let us consider a standard

probability space (Ω,F ,P) on which we are given two positive random variables P and W , which stand

respectively for the price of a given asset and the weight based on which we want to compute weighted

estimators. We assume the integrability conditions E [W ·P ] <+∞, E [W ] <+∞ and to avoid degenerate

situations, we also assume P (W > 0) = 1 and that P is not constant.

Model-based definitions. Let us define the cumulative distribution function (c.d.f.) of the weighted

price as

FW(x) := E
[
W · 1{P≤x}

]
E [W ]

, x ≥ 0. (2.1)

As we will focus on specific weights W , we index our quantities by W to highlight this dependence.

Although the notation FW may suggest that this quantity refers to the c.d.f. of W , we insist that it rather

refers to the distribution of P with weights W .

Remark 2.1. The above is analogue to a change of measure (with weights proportional to W ) also known

as importance sampling [Asmussen and Glynn, 2007, Section V.1 ]. The difference with importance sam-

pling is that the expectation of W is not necessarily equal to 1. The above reads more as a Feynman-Kac

formula occurring in mean field simulation [Del Moral, 2013]. Despite the similarity, the litterature on

these topics is not very helpful to obtain the following results.

The expectation (resp. probability) w.r.t. the probability measure induced by FW is denoted by EW [.] (resp.

PW (.)). For any measurable function g :R+ 7→R+, we have

EW
[
g (P )

]= E
[
W · g (P )

]
E [W ]

. (2.2)

The W -weighted average price (WAP) corresponds to the choice g (x) = x and writes

WAP := E [W ·P ]

E [W ]
. (2.3)

It coincides with the VWAP when W = V . Observe that the WAP is also the (unique) minimizer of the

quadratic problem

WAP := arg inf
p

EW
[|P −p|2] .
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The W -weighted median is defined by considering a similar minimization problem, but with the abso-

lute value loss (instead of the square):

WM := arg inf
p

EW
[|P −p|] . (2.4)

There may be several minimizers, all characterized by the equations

1

2
≥PW (P ≥ WM) = E

[
W 1{P≥WM)}

]
E [W ]

,
1

2
≤PW (P ≤ WM) = E

[
W 1{P≤WM)}

]
E [W ]

.

For the discussion of this Subsection and Subsection 2.2, we take the convention of considering the

smallest minimizer. Last, we define the W -weighted quantile at level α ∈ (0,1) by

qW(α) := inf

{
p :

E
[
W 1{P≤p}

]
E [W ]

≥α
}

.

Observe that the weighted median, as the smallest minimizer of (2.4), is obtained via qW( 1
2 ).

Data-based definitions. We now turn to the empirical versions of the previous definitions. Given n data

points (Pi ,Wi )n
i=1 sampled independently and supposedly from the distribution of (P,W ), the empirical

counterpart of FW is

F̂W,n(x) :=
∑n

i=1 Wi 1{Pi≤x}∑n
i=1 Wi

. (2.5)

This is related to the empirical measure
∑n

i=1 WiδPi (dx)/
∑n

i=1 Wi . Applying the previous definitions with

the above empirical distribution, we obtain

ŴAPn :=
∑n

i=1 Wi Pi∑n
i=1 Wi

, (2.6)

q̂W,n(α) := inf

{
p :

∑n
i=1 Wi 1{Pi≤p}∑n

i=1 Wi
≥α

}
, (2.7)

ŴMn := q̂W,n

(
1

2

)
. (2.8)

2.2 Statistical fluctuations, error bounds

The convergence study of ŴAPn , q̂W,n(α) to WAP, qW(α) will be conducted under various assumptions on

the tails of the distributions of W , W ·P and on the c.d.f. FW. We recall thatα ∈ (0,1). Below, X is a generic

scalar non-negative random variable.

(H0): The c.d.f. FW in (2.1) has a density fW:

FW(x) =
∫ x

0
fW(x ′)dx ′.

(Hκ
X): X has a finite moment of order κ> 2: E [X κ] <+∞.
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(HΓ
X): X has a sub-gamma distribution, i.e. E

[
ec X

]<+∞ for some c > 0.

(HG
X ): X has a sub-Gaussian distribution, i.e. E

[
ec X 2

]
<+∞ for some c > 0.

These assumptions on distribution tails range from the mildest to the strongest, in order to clearly distin-

guish the behavior of the fluctuations depending on the tail hypotheses. The 3 types of distribution tails

are quite standard, but they could be refined if necessary: we leave to the reader the generalization of the

following results to the η-exponential tails (E
[
ec|X |η]<+∞ for some c > 0, see [Chamakh et al., 2020]) or

to the η-heavy tails (E
[
e log(|X /c|+1)η

]<+∞ for some c > 0, see [Chamakh et al., 2022]).

For the current application to price aggregation and in view of the characteristics of cryptomarket data

(see Section 5), we will see that

• (Hκ
X) with X = V and X = V ·P hold, and allows to analyse confidence bounds for VWAP and VWM

(see Theorem 2.3),

• (HΓ
X) with X = log(1+V ) holds, and allows to analyse our new RWM estimator (see Theorem 2.4).

However, to make our results more widely applicable (beyond the current context), we add to the analysis

the convergence properties under the stronger assumption of sub-Gaussian tails (Theorem 2.5).

We first consider the asymptotic normality of estimators (Central Limit Theorem, CLT in short), as n →
+∞. We denote the weak convergence by ⇒.

Theorem 2.2 (Asymptotic fluctuations on WM and WAP). Assume (H0) with a continuous and non-vanishing

density fW at qW(α), and assume (Hκ
X) for X =W and some κ> 2. Then

p
n

(
q̂W,n(α)−qW(α)

)⇒N

0,
E
[

W 2
(
α− 1{P≤q(α)}

)2
]

(
E [W ] fW

(
qW(α)

))2

 . (2.9)

Assume (Hκ
X) for X =W and X =W ·P and for some κ> 2, then

p
n

(
ŴAPn −WAP

)⇒N

(
0,
E
[
W 2(WAP−P )2

]
(E [W ])2

)
. (2.10)

As for usual CLTs, the random variables under consideration are required only to have finite moments

with low order ((Hκ
X) for some κ > 2). However, for finite size samples, the estimators may be far from

being Gaussian because of the possible heavy tails: we recall that in our applications, the sample size n is

around 100, thus assessing error bounds in a non-asymptotic way is really important. This is the purpose

of the next three results. Namely, we are interested in deriving sharp bounds for left and right deviations:

let α ∈ (0,1) and x > 0, define

Q>
n (α, x) :=P

(
q̂W,n(α)−qW(α) > xp

n

)
, Q≤

n (α, x) :=P
(

q̂W,n(α)−qW(α) ≤− xp
n

)
, (2.11)

W ≥
n (x) :=P

(
ŴAPn −WAP≥ xp

n

)
, W ≤

n (x) :=P
(
ŴAPn −WAP≤− xp

n

)
. (2.12)
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Theorem 2.3 (Deviation bounds under Heavy Tail assumptions). Assume (H0) and (Hκ
X) for X = W and

some κ> 2. Then

Q>
n (α, x) ≤

(
κ+2

κ

)κ (2[α∨ (1−α)])κE [W κ]

n
κ
2 −1

[
xE [W ] fW([qW(α), xp

n
])

]κ +exp

− 2
[

xE [W ] fW([qW(α), xp
n

])
]2

(κ+2)2eκ[α∨ (1−α)]2E
[
W 2

]
 , (2.13)

Q≤
n (α, x) ≤

(
κ+2

κ

)κ (2[α∨ (1−α)])κE [W κ]

n
κ
2 −1

[
xE [W ] fW([qW(α), −xp

n
])

]κ +exp

− 2
[

xE [W ] fW([qW(α), −xp
n

])
]2

(κ+2)2eκ[α∨ (1−α)]2E
[
W 2

]
 . (2.14)

Assume (Hκ
X) for X =W and X =W ·P, and for some κ> 2. Then

W ≥
n (x) ≤

(
κ+2

κ

)κ 2κE
[

W κ|P −WAP− xp
n
|κ

]
n

κ
2 −1 [xE [W ]]κ

+exp

− 2[xE [W ]]2

(κ+2)2eκE
[

W 2(P −WAP− xp
n

)2
]
 , (2.15)

W ≤
n (x) ≤

(
κ+2

κ

)κ 2κE
[

W κ|P −WAP+ xp
n
|κ

]
n

κ
2 −1 [xE [W ]]κ

+exp

− 2[xE [W ]]2

(κ+2)2eκE
[

W 2(P −WAP+ xp
n

)2
]
 . (2.16)

In the above result, we restrict ourselves to the case where κ > 2. The extension to κ ∈ (1,2] could be

handled using the Bahr-Esseen inequality [Bahr and Esseen, 1965, Section 5], which would lead to fluc-

tuations in (2.11)-(2.12) of order 1/n1−1/κ instead of 1/
p

n; we leave this case aside because its statistical

fluctuation properties are bad.

In the next result, we make use of a Young function (convex, continuously increasing, mapping [0,+∞)

to [0,+∞)) parametrized by L > 0:

ΨL (x) := exp

((p
1+2Lx −1

L

)2)
−1.

It permits to define an Orlicz norm [van de Geer and Lederer, 2013] (called the Bernstein-Orlicz norm)

on sub-gamma random variables: for any real random variable X , set

∥X ∥ΨL := inf

{
c > 0 : E

[
ΨL

( |X |
c

)]
≤ 1

}
.

See [Krasnoselskii and Rutickii, 1961] for a general account on Orlicz norms.

Theorem 2.4 (Deviation bounds under sub-gamma assumptions). Assume (H0) and (HΓ
X) for X = W .

Then W has a finite Bernstein-Orlicz norm ∥W ∥ΨL . In addition,

Q>
n (α, x) ≤ exp

−
(
E [W ] x fW([qW(α), xp

n
])/(2[α∨ (1−α)]∥W ∥ΨL (1+L))

)2

(√
E[W ]x fW([qW(α), xp

n
])

(2[α∨(1−α)]∥W ∥ΨL (1+L))
p

n
+ 1

2 + 1p
2

)2

 , (2.17)
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Q≤
n (α, x) ≤ exp

−
(
E [W ] x fW([qW(α), −xp

n
])/(2[α∨ (1−α)]∥W ∥ΨL (1+L))

)2

(√
E[W ]x fW([qW(α), −xp

n
])

(2[α∨(1−α)]∥W ∥ΨL (1+L))
p

n
+ 1

2 + 1p
2

)2

 . (2.18)

Assume (HΓ
X) for X =W and X =W ·P. Then,

max
(
W ≥

n (x),W ≤
n (x)

)≤ exp

−
(
xE [W ]/(2(∥W (P −WAP)∥ΨL +∥W ∥ΨL

xp
n

)(1+L))
)2

(√
xE[W ]

(2(∥W (P−WAP)∥ΨL+∥W ∥ΨL
xp
n

)(1+L))
p

n
+ 1

2 + 1p
2

)2

 . (2.19)

The next result is dedicated to sub-Gaussian distribution, for which we consider an appropriate Orlicz

norm

∥X ∥ΨG := inf

{
c > 0 : E

[
ΨG

( |X |
c

)]
≤ 1

}
,

whereΨG (.) is the Young function

ΨG (x) = exp
(
x2)−1.

Theorem 2.5 (Deviation bounds under sub-Gaussian assumptions). Assume (H0) and (HG
X ) for X = W .

Then W has a finite Orlicz norm ∥W ∥ΨG . In addition,

Q>
n (α, x) ≤ exp

(
−

(E [W ] x fW([qW(α), xp
n

]))2

8[α∨ (1−α)]2 ∥W ∥2
ΨG

)
, (2.20)

Q≤
n (α, x) ≤ exp

(
−

(E [W ] x fW([qW(α), −xp
n

]))2

8[α∨ (1−α)]2 ∥W ∥2
ΨG

)
. (2.21)

Assume (HΓ
X) for X =W and X =W ·P. Then,

max
(
W ≥

n (x),W ≤
n (x)

)≤ exp

(
− (E [W ] x)2

8(∥W (P −WAP)∥ΨG +∥W ∥ΨG
xp
n

)2

)
. (2.22)

The proofs of Theorems 2.2, 2.3, 2.4 and 2.5 are given in Appendix A.

In the above statements, there is no reason why the constants should be optimal. However the depen-

dency in x and n is sharp, in the sense that their proofs make use of concentration-inequality results

(under various distribution tail assumptions) that are known to be sharp. To better grasp the essence

of the above bounds, let us focus on the dependency in x and n only, and replace all other factors by

a generic constant c: in that case, left and right deviations are similar and can be summarized in the

following table.

10



2.3 Final estimator 2 MAIN THEORETICAL RESULTS

max(Q>
n (α, x),Q≤

n (α, x)) max(W ≥
n (x),W ≤

n (x))

Heavy-Tail assumptions
c

n
κ
2 −1xκ

+exp
(−cx2) c

(
1+ xp

n

)κ
n

κ
2 −1xκ

+exp

(
− cx2

1+ c x2

n

)

Sub-gamma assumptions exp

(
− cx2

1+ c xp
n

)
exp

− cx2(
1+ c xp

n

)3


Sub-Gaussian assumptions exp

(−cx2) exp

(
− cx2

1+ c x2

n

)

Table 1: Simplified bounds for Theorems 2.3, 2.4, 2.5

Unsurprisingly, the sub-Gaussian setting offers the best confidence intervals: for a relatively small value

of x, the probability of deviation is quite small (exponentially small in x), ensuring a good accuracy of

both estimators q̂W,n(α) and ŴAPn . Under a sub-gamma hypothesis, the accuracy is comparable and

slightly deteriorated by the term x/
p

n: this setting is essential for us because it corresponds to the

framework in which we study our RWM estimator for the choice W = log(1+V ) (Equation (2.23)), see

details in Subsection 2.3. On the other hand, the accuracy under heavy-tail assumptions is poor because

of the term c

n
κ
2 −1xκ

, especially when n is small. Note that κ is linked to the heaviness of the tail, which

is characterized by the tail-index γ (see Section 3). Therefore, even in favorable cases (κ > 2 ⇔ γ < 0.5),

we have n
κ
2 −1 ≈ 1 which is quite small and forces x to be very large to guarantee a high probability of

confidence intervals. In other words, in the heavy-tail setting, statistical fluctuations of the estimators

are presumably huge compared to the sub-gamma setting. We recall that the well-know aggregation

price estimators V̂WMn and �VWAPn can be analyzed via Theorem 2.3 (because volumes are heavy tailed,

see Section 5), which shows that high statistical accuracy for these estimators cannot be expected.

2.3 Final estimator

As highlighted previously, the statistical fluctuations of V̂WMn (i.e. q̂W,n
(1

2

)
with W = V ) are directly im-

pacted by the tail-heaviness of V , and the latter empirically appeared to be heavy tailed (see Figure 2b).

Therefore, in order to benefit from the accuracy bounds discussed above under the sub-gamma set-

ting, we shall consider a weighting variable W with the adequate properties. To this end, for all (x, y) ∈
[0,∞)× (0,∞), let

ϕ(x, y) := log

(
1+ x

y

)
,

which is similar to the Cauchy/Lorentzian loss function [Black and Anandan, 1996], well-known for the

robustness property it entails for statistical learning problems. Thus, define

ŴMn := q̂W,n

(
1

2

)
with W := log

(
1+ V

qV (1/2)

)
(2.23)

and qV (1/2) the median of V . The new estimator behaves like V̂WMn for small volume data points because

log(1 + x) ∼x→0 x, and it increasingly weighs prices as volumes increase, which is one of the desired

11



2.3 Final estimator 2 MAIN THEORETICAL RESULTS

properties (as for V̂WMn and �VWAPn) of an aggregator price. In addition, it is straightforward to observe

that that since the survival function of the heavy-tailed random variable V decays by definition (see

Paragraph 3) at a rate v−1/γV as v →∞ with γV > 0, W satisfies HΓ
X for X = W . Therefore, Theorem 2.4

applies and yields small statistical fluctuations of ŴMn , even in presence of small number n of data points.

Practical computation of ŴMn . Starting from the price and weight observations {(Pi ,Wi )}n
i=1, consider a

permutation π of the price indices {1, · · · ,n} such that Pπ(1) ≤ Pπ(2) ≤ ·· · ≤ Pπ(n). Let h↑
k be the probability

of the cumulative weight

h↑
k :=

∑k
i=1 Wπ(i )∑n

i=1 Wi
for k ∈ {1, . . . ,n} , with the convention that h↑

0 := 0,

then define k⋆ as the unique value such that h↑
k⋆ ≤ 0.5 and h↑

k⋆+1 > 0.5. Note that this weighting rule is

based on the increasing ordering of P . We are now in a position to write the estimator ŴMn usually found

in the literature (see [CF Benchmarks, 2022b, p.9]):

ŴMn =


Pπ(k⋆)+Pπ(k⋆+1)

2 , if k⋆ ̸= 0,

Pπ(1), otherwise.
(2.24)

Practical computation of R̂WMn . Our proposed RWM estimator introduces two additional features com-

pared to ŴMn : a) a quantile interpolation and b) a decreasing ordering of prices. First, the half-sum in

(2.24) is replaced by a linear interpolation (which allow to have an output continuous with respect to the

volume inputs). Second, an additional estimator ŴM↓n is computed using the reversed cumulative weight,

i.e. h↓
k =

∑k
i=1 Wπ(n−i+1)∑n

i=1 Wi
(equivalent to consider a decreasing ordering of P ), and afterward, an average of

decreasing and increasing ordering estimators is produced.2 All in all, the RWM estimator is defined as

R̂WMn := R̂WMn(P,W ) := ŴM↑n (P,W )+ ŴM↓n (P,W )

2
,

where ŴM↑n and ŴM↓n respectively define the robust weighted median estimator from below and from

above, i.e.,

ŴM↑n(P,W ) :=

Pπ(k⋆) + (0.5−h↑
k⋆)

(
Pπ(k⋆+1)−Pπ(k⋆)

h↑
k⋆+1

−h↑
k⋆

)
if k⋆ ̸= 0

Pπ(1) otherwise,

and

ŴM↓n(P,W ) :=−ŴM↑n(−P,W ).

We discuss the properties of R̂WMn as a price aggregator, as mentioned in the introduction. We follow the

classification of [Paine and Knottenbelt, 2016].

2Usually, researchers and practitioners don’t pay much attention to the distinction of decreasing and increasing ordering.
However, this makes a difference when weighting is accounted for, as well as for small sample size.
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3 DATA DESCRIPTION

Relevance. The estimator R̂WMn is a relevant price aggregator because, since it is built as a median, the

estimator reflects a price consensus.

Timeliness. In our tests, the estimator is calculated every minute (so as to have around 100 data points

to aggregate), as such it is reactive to market movements (on a minute scale). It could certainly

aggregate prices at a higher frequency.

Manipulation Resistance. The question is how tiny or huge orders affect our estimator R̂WMn . On the one

hand, micro-orders will multiply the number of trades but without really affecting the estimator

because the price data associated with small volumes are not weighted very much (but propor-

tionally to the volumes). On the other hand, it will cost a trader considerable effort to significantly

move the price estimator due to the logarithmic function in the volume; note that it is easier to

manipulate prices based on V̂WMn and �VWAPn . All in all, our estimator R̂WMn is manipulation resis-

tant.

Martingale Property. Since our estimator is localized in time, it is not possible to game the market

by predicting the behavior of the price estimator. We will see in our tests (Sections 4 and 5) that

R̂WMn allows to recover the realized variance of a noisy price time series, showing that the trajectory

properties are not altered by our estimator.

Verifiability. By publishing the index calculation methodology, we guarantee the transparency of the

method and the possibility to independently verify the calculations.

Replicability. It is obviously very easy to reproduce the estimated values from the input data.

Stability. By construction, the estimator is robust to outliers or extreme values in prices and volumes, as

a median is performed on prices and a logarithmic weighting on volumes is performed. Moreover,

Theorem 2.4 shows excellent theoretical properties related to confidence intervals, which will be

confirmed in subsequent tests. Its statistical stability, comparable to a Gaussian estimator (see

Table 1), shows that it can work with scarce data (and thus is resistant to missing data).

Parsimony. Our estimator has no parameters to set, and thus, it offers optimal parsimony properties.

3 Data description

The R̂WMn estimator is tested on both simulated and real cryptocurrency data. In order to paramete-

rize the former dataset, we first study the statistical behavior of the latter. Using Kaiko’s Instrument

Explorer3 and Trades product 4, we selected all the trades made on all the available exchanges for 67

pairs during 4 different days, including both calm (2022-06-28, 2022-12-09) and stressed (2022-06-12,

2022-05-05) periods in the market. In total, we collected 268 use cases (one pair for one period) for

a total of 80,448,919 trades with their associated volume, price and computed ordinary returns. More

details on the data statistics are reported in Table 2. In the next paragraph we study the tail behavior of

the variables of interest which, as previously proved in Section 2.2, plays a crucial role in the deviation

bounds of the different estimators.

3https://instruments.kaiko.com/#/instruments
4https://docs.kaiko.com/#historical-trades
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3 DATA DESCRIPTION

Number of trades Returns

Period Mean Std. Mean Std. Ann. Vol.

2022-05-05 96 156 −0.44 ·10−4 8 ·10−4 55%
2022-06-12 188 311 −0.19 ·10−4 15 ·10−4 104%
2022-06-28 94 149 −0.24 ·10−4 8 ·10−4 56%
2022-12-09 42 74 −0.04 ·10−4 5 ·10−4 36%

Table 2: Data statistics (number of trades, returns) per minute by discarding 5% of the lowest and the
highest returns. The annualized volatility associated with the standard deviation of the returns is added.

Heavy-tail modelling. Extreme value theory provides a statistical framework on tail behaviors and it

clusters distributions according to the decay rate of their survival functions driven by a real parameter

γ, called the tail-index (a.k.a. extreme-value index). Heavy-tailed distributions (e.g. Pareto, Student,

Cauchy) are related to γ > 0 where the associated survival function decays at a rate x−1/γ as x → ∞,

which implies ([de Haan and Ferreira, 2006, Theorem 1.2.1] and [de Haan and Ferreira, 2006, Proposi-

tion B.1.9.9]) that the quantile diverges at a rate (1 − u)−γ as u → 1. Heavy-tailed distributions have

been revealed useful to describe the tail structure of actuarial and financial data [Embrechts et al., 1997,

p.8], [Resnick, 2007, Section 1.3.2].

Estimating the tail-index. The most well-known tail-index estimator is the Hill estimator [Hill, 1975],

which is known to be biased [de Haan and Ferreira, 2006, Theorem 3.2.5, p. 74]. Since then, several works

have proposed bias reduction techniques in order to improve the original Hill estimator. Such tech-

niques mainly rely on the second-order condition [de Haan and Ferreira, 2006, Section 2.3] introducing

a second-order parameter ρ < 0 which is the main driver of the bias in most of the tail-index estimators.

Using the second-order estimator implemented in the R package evt0 [Manjunath et al., 2013] on all

the use cases, it appears that ρ̂ ≈ −0.7 which is close to what was estimated on the traditional financial

market during a stressed period [Allouche et al., 2022b]. Such a high value of ρ̂ indicates a relatively large

bias situation, and so it supports the use of a refined method for the tail-index estimator. In this context,

we consider the one proposed recently in [Allouche et al., 2022a], which is illustrated in Figure 2a for one

use case. The advantage of this method is that it searches for anchor points in a much smaller area than

the usual methods, which makes it easier to find them, especially in an automated way when data sets

may have quite different sizes. Estimating the tail-index for all the use cases, it appears in Figure 2b that

the distributions of the volumes, of the price returns and of the product of the two are heavy-tailed. Note

that the tail of the volume (γ̂V ≈ 0.6) is very heavy (no finite variance) and is significantly heavier than

the one on the price returns (γ̂P ≈ 0.4), while the tail of the product is heavier than the max of the two

but lower than their sum. This phenomenon indicates the presence of tail dependence.

Tail dependence. On the one hand, it is known [McNeil et al., 2005, Theorem 7.35 p. 295], [Breiman, 1965]

that the survival function of the product of two independent heavy-tailed random variables behaves as

the one with the heaviest tail. On the other hand it is easy to check that the tail-index of the product

of two fully dependent and comonotone heavy-tailed random variables is equal to the sum of the two

tail-indices. In this context, this requires the study of the empirical joint dependence and more precisely

in the right tail, which is related to the delicate notion of upper tail dependence (see [Joe, 1997, Section
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3 DATA DESCRIPTION

2.1] among others). For a random vector (X1, X2), the latter is defined as

λ= lim
u→1−P

(
X1 > F−1

X1
(u)|X2 > F−1

X2
(u)

)
if the limit exists. Several non-parametric estimators have been developed (see [Garcin and Nicolas, 2021]

for an overview), but here we use the one proposed in [Frahm et al., 2005], illustrated in Figure 2c for one

use case. Estimating the upper tail dependence for all of them, it appears in Figure 2d that our assump-

tion on the presence of tail dependence is confirmed with λ̂≈ 0.1.
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Figure 2: Illustration of extreme statistics on real cryptocurrency pairs aggregated per second. (a):
Hill estimators as functions of anchor points in a restricted adapted range for bias reduction purposes
[Allouche et al., 2022a] (black) regarding the price returns of the pair btc/usdc on 2022-05-05. The esti-
mated tail-index selected by [Allouche et al., 2022a, Algorithm 1] is emphasized by a triangle. (b): Box
plot of the estimated tail-index on the volumes (left), on the price returns (middle) and on the product
of the two (right) for all considered pairs on 2022-05-05 (blue), 2022-06-12 (orange), 2022-06-28 (green)
and 2022-12-09 (red). Outliers are discarded from the box plot. (c): Upper tail dependence estimator
between price returns and volumes (blue), and the independence case (black dashed line) u 7→ 1−u as
a function of u ∈ (0.9,1) for the pair btc/usdc on 2022-05-05. The estimated upper tail dependence se-
lected by [Frahm et al., 2005, Section 4.4] is emphasized by a triangle. (d): Box plot of the estimated upper
tail dependence for all considered pairs and periods. Both the color legend and the outliers display are
similar to 2b. The whiskers, in the box plots 2b, 2d and in the following ones, represent respectively the
percentiles 5% and 95%.
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4 VALIDATION OF R̂WMn ON SYNTHETIC DATA

4 Validation of R̂WMn on synthetic data

4.1 Experimental design

The objective is to assess the statistical behavior of our aggregated estimator on simulated prices and

volumes, using a model having similar statistical properties than those described in Section 3. To mimic

the situation of data that is fragmented over different platforms, we consider a single price path {St }T
t=1

which is supposedly not observed directly and which plays the role of an efficient price to be recovered

from observations; at each time t we assume the observations of n = 100 noisy prices S̃ j
t = St (1+ r j

t ),

perturbed by either positive or negative noises r j
t for all j ∈ {1, . . . ,n}. The efficient price path is simulated

arbitrarily with a Geometric Brownian Motion (GBM) parameterized by a drift µ and a volatility σ:

St+1 = St exp
(
(µ−σ2/2)dt +σε

√
dt

)
,

with the time variable t = 0, . . . ,T −1 for T = 1440 minutes (1 day) and with a time step dt = 1/(365×24×
60). We set µ= 0 and σ= 0.5 according to Table 2 on real data statistics.

First, the noisy returns r j
t are drawn from a mixture model with two components, each distributed

respectively as light tailed (small returns) and heavy tailed (large returns), with a mixture parameter

ω ∈ [0,1] controlling the proportion of the former regime. Incorporating a mixture proportion param-

eter ω will allow us to simulate an increase in the number of data points with heavy tails on the returns,

so as to mimic the effect of outliers. Thus, we will be able to test how robust the price aggregator RWM is to

outliers, with an increasing proportion of outliers. In [CF Benchmarks, 2022b] [CF Benchmarks, 2022a],

the percentage of erroneous data and outliers is estimated to 10% for normal situations, which corre-

sponds to ω= 0.9 in our framework. Since the efficient prices have Gaussian log-returns, it is natural to

suppose that the small returns are centered Gaussian perturbations with a variance of order (8 ·10−4)2

related to the one observed in Table 2. The large returns are simulated from a Burr(γ,ρ) distribution pa-

rameterized by the first two estimated order parameters γ̂P = 0.4 and ρ̂P =−0.7 according to Figure 2b,

with a quantile function defined as

qBurr
γ,ρ (u) = (

(1−u)ρ−1
)− γ

ρ , ∀u ∈ (0,1).

Second, the volume is also simulated from a Burr distribution but with other appropriate parameters

γ̂V = 0.6 and ρ̂V = −0.7 according to Figure 2b. This is a heavy-tail distribution, i.e. we directly con-

sider the most challenging situation, without going through a mixture distribution having one com-

ponent with light-tail, in contrast with what was done for returns modelling. Regarding the modelling

of the dependency between returns and volumes, and based on the empirically observed dependency

property, the data simulation is performed using copula (see [Nelsen, 2006] for an overview), which al-

lows to model separately the dependence structure and the margins with parameters coming from real

data statistics in Section 3. The simulation of the dependent variables P and V is done through an

Archimedean copula defined in a bivariate case for all (u1,u2) ∈ [0,1]2 as

Cθ(u1,u2) =ψθ(ψ−1
θ (u1)+ψ−1

θ (u2)),

where ψθ is a decreasing and convex function on [0,1] → [0,∞] parameterized by θ with ψθ(1) = 0

and ψθ(0) =∞. See [McNeil and Nešlehová, 2009] for all listed properties on Archimedean copulas and
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4.2 Performance assessment 4 VALIDATION OF R̂WMn ON SYNTHETIC DATA

[Allouche et al., 2022b, Appendix A p.25] for the sampling schema in a bivariate case. Here we focus on

the Gumbel copula where the associated generating function is ψθ(t ) = exp(−t 1/θ) defined for all θ ≥ 1

and t ≥ 0. It is well known [Nelsen, 2006, 5.4 p.215] thatλ= 2−21/θ, so we consider θ = log2/log1.9 based

on λ̂= 0.1 estimated in Figure 2d.

4.2 Performance assessment

The numerical tests allow to evaluate for different mixture scenarios

ω ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99}

(the larger amount of heavy tails – or outliers – on returns corresponding to ω= 0.1 assuming we have to

include unreliable data sources), the capacity of our model to estimate: a) the efficient price St at a time

t , and b) the annualized Realized Volatility (RV) associated with the efficient price

σeff =p
365

√√√√T−1∑
t=1

log

(
St+1

St

)2

, (4.1)

which is a key tool in risk management. The experiments are replicated M = 1000 times in order to

compare the Root Mean Square Error (RMSE) on the estimated quantities Ŝt ,i and σ̂i between the R̂WMn

and the other competitors (V̂WMn and �VWAPn) for all i ∈ {1, . . . , M } where

RMSEprice
t =

(
1

M

M∑
i=1

(St ,i − Ŝt ,i )2

)1/2

and RMSERV =
(

1

M

M∑
i=1

(σeff
i − σ̂i )2

)1/2

.

4.3 Simulation process

For each t ∈ {1, . . . ,T } and j ∈ {1, . . . ,n}:

• Sample a random pair U1,U2 from the bivariate copula Cθ.

• Simulate noisy prices S̃ j
t = St (1+ r j

t ) according to the simulated returns

r j
t := R j

t Z j
t ,

with a Rademacher random variable R j
t and a mixture random variable

Z j
t = ξ j

t Y j
t + (1−ξ j

t )
X j

t −E [X ]

qBurr
γ̂P ,ρ̂P

(1−1/(nT ))
,

composed by

Y j
t = qNormal

µ,σ2 (U1),

X j
t = qBurr

γ̂P ,ρ̂P
(U1), E [X ] = Γ(−1/ρ̂P + γ̂P /ρ̂P )Γ(1− γ̂P /ρ̂P )

Γ(−1/ρ̂P )
,

ξ
j
i ∼ Bern(1−ω).
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4.4 Results 4 VALIDATION OF R̂WMn ON SYNTHETIC DATA

Note that if a simulated price is negative, which should not statistically be that often thanks to the

normalization qBurr
γ̂P ,ρ̂P

(1−1/(nT )) in order to restrict
∣∣∣r j

t

∣∣∣< 1, we clip it to 10−8.

• Simulate volumes Ṽ j
t = qBurr

γ̂V ,ρ̂V
(U2).

4.4 Results

We observe in Figure 3 the aggregated prices computed by the three estimators, based on the noisy prices

simulated around efficient prices. It appears that when ω = 0.99 (Figures 3a and 3b), all the estimators

globally behave in the same way and when large values occur on prices and/or volumes – coherently

with heavy-tail empirical distributions –, R̂WMn is the only estimator to be resilient. The robustness of

our estimator is confirmed for a larger amount of heavy tails on returns with ω= 0.7 (Figures 3d and 3e).

Performance results are presented in Table 3 where R̂WMn outperforms both V̂WMn and �VWAPn on the price

estimation and on the realized volatility for all considered configurations of ω. The estimators V̂WMn and�VWAPn are robust (RMSE is less than one) on the price estimation until ω= 0.5 and ω= 0.6 respectively;

but not on the annualized RV. On the other hand, R̂WMn is robust on both criteria for all values of ω. This

phenomenon highlights the ability of our estimator to compute key statistics in any situation, while the

other methods fail. Note that the RMSERV is lower with the �VWAPn than with the V̂WMn since the latter

suffers from quick jumps because of a) the half-sum in the median and b) the impact of simultaneous

extreme volumes and prices.
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Figure 3: (a)-(d): Efficient price time-series (St )1440
t=1 (orange line) simulated with σ = 0.5 (σeff = 0.51),

and its associated noisy prices (S̃ j
t , j ∈ {1, . . . ,100})1440

t=1 (blue dots) with ω = 0.99 (a) and ω = 0.7 (d). (b)-
(e): Scatter plots of the associated estimated prices (Ŝt )100

t=1 (V̂WMn : blue, �VWAPn : orange, R̂WMn : green)
with respect to the reference price. The best estimator is illustrated by the black dashed regression line
x 7→ y = x. Both horizontal and vertical axes are limited to 97.5 and 101 for a better display. (c)-(f): Scatter
plots of the reference price estimation with log-scale axes.
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6 CONCLUSION

RMSEprice RMSERV

ω V̂WMn �VWAPn R̂WMn V̂WMn �VWAPn R̂WMn

0.99 3.0 3.7 1.3 28.1 4.8 0.02
0.95 3.1 32.2 1.4 52.5 8.5 0.02
0.90 3.2 36.4 1.5 63.0 10.4 0.02
0.80 3.5 43.8 1.6 74.7 13.0 0.03
0.70 37.9 53.0 1.8 120.6 18.1 0.03
0.60 38.2 62.9 2.1 141.7 21.1 0.04
0.50 97.8 115.5 2.5 168.3 23.7 0.06
0.40 116.3 127.7 3.0 187.1 26.1 0.09
0.30 116.5 131.4 3.9 201.31 28.25 0.14
0.20 122.6 134.0 5.5 222.5 30.9 0.26
0.10 123.0 136.0 8.2 226.1 31.9 0.51

Table 3: Comparison between V̂WMn , �VWAPn and R̂WMn results for different simulation scenarios with
ω ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99} using two performance criteria. Top: RMSE on price
estimation at time t = 1, all results are scaled by 102. Bottom: RMSE on realized volatility. Best results are
emphasized in bold.

5 Illustration of of R̂WMn on real data

Our goal here is to compare the different aggregated price estimators on real trades described in Sec-

tion 3 based on the annualized RV criteria (4.1). Two use cases illustrated in Figure 4a and in Figure 4b

highlight real applications of price estimation on common and liquid pairs. While the outputs of the

R̂WMn estimator are smooth, those of both V̂WMn and �VWAPn estimators suffer from small (Figure 4a) and

very large (Figure 4b) peaks due to outliers. Note that, similarly to the other estimators, R̂WMn does not

suffer from delayed jump reactions (see for example minutes 50, 425 and 500 in Figure 4a). Computing

the annualized RV for all the use cases, it appears in Figure 4c that the median is very close for all consid-

ered periods between the three estimators, which confirms that most of the time they behave similarly.

Nevertheless, the lower average for the R̂WMn shows that it is less impacted by outliers compared to its

competitors.

6 Conclusion

Our study has shown that standard price aggregators such as Volume Weighted Average (VWAP) and

Volume Weighted Median (VWM) prices suffer from instability and lack of robustness when applied to

cryptocurrency data that are heavy-tailed. Based on a deep statistical study on the real data, we have

built an estimator, called Robust Weighted Median (RWM), that is robust to large statistical fluctuations

caused by the heavy-tailed behavior of both the volumes and the price returns, while satisfying all the

desired properties of a price aggregator. Our analysis is supported by new theoretical results in statis-

tics: in particular, we have derived, to the best of our knowledge, the first probabilistic concentration

inequalities for weighted means and weighted quantiles under different tail assumptions (heavy tails,

sub-gamma tails, sub-Gaussian tails). The sub-gamma case turns out to be the relevant setting for an-

alyzing RWM, while the accuracy of usual price aggregation estimators are related to the concentration
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Figure 4: (a)-(b): Comparison between V̂WMn (blue), �VWAPn (orange) and R̂WMn (green) on real data aggre-
gation per minute of the pair eth/btc (a) and zec/btc (b) on 2022-06-28. (c): Box plot of the annualized
RV (over all pairs) from V̂WMn (left), �VWAPn (middle) and R̂WMn (right) on 2022-06-28 (blue), on 2022-06-12
(orange), on 2022-09-12 (green) and on 2022-05-05 (red). The mean is emphasized by a red triangle and
outliers are discarded. d)Box plot of the annualized RV taking into account outliers with the y-axis in
log-scale.

inequalities for heavy tails.

From a practical point of view, the estimator RWM outperforms both WVAP and VWM in terms of robust-

ness and regularity during stressed scenarios (about 5 to 10% of all scenarios); while all the estimators

behave more or less similarly most of the remaining time. The accurate estimation of risk management

metrics such as the realized volatility in presence of contaminated data highlights the ability of RWM to

compute key statistics in any situation, while the other methods fail. The excellent performance of the

RWM price aggregator shows that it can be a reliable tool in the perspective of automatic price calcula-

tion, limiting to the maximum the post-processing by hand.
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A PROOFS OF MAIN THEORETICAL RESULTS

A Proofs of main theoretical results

A.1 General identities on weighted quantiles and weighted mean

By using the properties of generalized inverse [Embrechts and Hofert, 2013, Proposition 2.3 - item (5)]

applied to (2.5)-(2.7)-(2.8), and because each Wi is positive, for any y we have{
q̂W,n(α) ≤ y

}= {
α≤ F̂W,n(y)

}
=

{
n∑

i=1
αWi ≤

n∑
i=1

Wi 1{Pi≤y}

}

=
{

1p
n

n∑
i=1

(
Wi (α− 1{Pi≤y})−E

[
W (α− 1{P≤y})

])≤−pnE
[
W (α− 1{P≤y})

]}
. (A.1)

Taking the complement gives

{
q̂W,n(α) > y

}={
1p
n

n∑
i=1

(
Wi (α− 1{Pi≤y})−E

[
W (α− 1{P≤y})

])>−pnE
[
W (α− 1{P≤y})

]}
. (A.2)

The following lemma gives an estimate of the term
p

nE
[
W (α− 1{P≤y})

]
for y close to the weighted quan-

tile qW(α).

Lemma A.1. Set y = qW(α)+ xp
n

for x ∈R. Then

−pnE
[
W (α− 1{P≤y})

]= x E [W ] fW

([
qW(α),

xp
n

])
,

with fW

([
qW(α),

xp
n

])
:=

∫ 1

0
fW

(
qW(α)+u

xp
n

)
du.

Proof. First, since FW is assumed to be continuous (density assumption (H0)), we have α = FW(qW(α)).

Then, using the density fW for writing expectations as in (2.2), we derive

E
[
W (α− 1{P≤y})

]= E [W ]
∫ qW(α)

0
fW(x ′)dx ′−E [W ]

∫ qW(α)+ xp
n

0
fW(x ′)dx ′

=−E [W ]
xp
n

∫ 1

0
fW

(
qW(α)+u

xp
n

)
du.

Similarly to the weighted quantile, for (2.6) we write

{
ŴAPn ≤ y

}={
n∑

i=1
Wi Pi ≤ y

n∑
i=1

Wi

}

=
{

1p
n

n∑
i=1

(
Wi (y −Pi )−E[

Wi (y −Pi )
])≥−pnE

[
W (y −P )

]}
. (A.3)

24



A.2 Proof of Theorem 2.2 A PROOFS OF MAIN THEORETICAL RESULTS

Taking y = WAP− xp
n

where WAP= E[W ·P ]
E[W ] (see (2.3)), we get

−pnE
[
W (y −P )

]= xE [W ] , (A.4)

and using (2.12), we have

W ≤
n (x) =P

(
1p
n

n∑
i=1

(
Wi (WAP− xp

n
−Pi )−E

[
Wi (WAP− xp

n
−Pi )

])
≥ xE [W ]

)
. (A.5)

We can proceed similarly with
{
ŴAPn ≥ WAP+ xp

n

}
, and we get

W ≥
n (x) =P

(
1p
n

n∑
i=1

(
Wi (Pi −WAP− xp

n
)−E

[
Wi (Pi −WAP− xp

n
)

])
≥ xE [W ]

)
. (A.6)

A.2 Proof of Theorem 2.2

Proof of (2.9). Starting from (A.1) with y = qW(α)+ xp
n

for x ∈R, we get

{p
n

(
q̂W,n(α)−qW(α)

)≤ x
}={

1

σn
p

n

n∑
i=1

(
Z n

i −E[
Z n])≤−

p
n

σn
E
[

Z n]}
, (A.7)

where

Z n
i :=Wi (α− 1{Pi≤qW(α)+ xp

n
}), σn :=

√
Var[Z n], Z n :=W (α− 1{P≤qW(α)+ xp

n
}).

By Lemma A.1 and using the continuity of fW(·) at qW(α), we have

−pnE
[

Z n]= xE [W ] fW(qW(α))+o(1)

as n →+∞. In addition, the dominated convergence theorem yields

E
[(

Z n)2
]
→ E

[
W 2 (

α− 1{P≤qW(α)}
)2

]
.

Since E [Zn] → 0, we deduce σn → σ :=
√
E
[

W 2
(
α− 1{P≤qW(α)}

)2
]

as n → ∞. Observe that σ ̸= 0. We

now claim that the renormalised sum in (A.7) converges weakly to a standard Gaussian random variable

N (0,1): indeed, this is a normalized sum of independent, centered and unit variance random variables,

and

limsup
n≥1

E

[∣∣∣∣ Z n −E [Z n]

σn

∣∣∣∣2+κ]
≤ 22+κ E

[
W 2+κ]
σ2+κ <∞

in view of (Hκ
X) with X = W and some κ> 2, thus the Central Limit Theorem under Lyapunov condition

applies ([Bhattacharya and Rao, 2010, Corollary 18.3]). All in all, we have proved

P
(p

n
(
q̂W,n(α)−qW(α)

)≤ x
)→P

(
N (0,1) ≤ xE [W ] fW(qW(α))

σ

)
,
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which leads to the announced result.

Proof of (2.10). Starting from (A.3) with y = WAP+ xp
n

and using (A.4), we get

P
(p

n(ŴAPn −WAP) ≤ x
)=P(

1

σn
p

n

n∑
i=1

(
Z n

i −E[
Z n])≥−xE [W ]

σn

)
,

where, here, we set

Z n
i :=Wi (WAP+ xp

n
−Pi ), σn :=

√
Var[Z n].

As for the previous CLT proof, it is easy to check that, under the standing assumptions ((Hκ
X) with X =

W ·P and X =W and some κ> 2),

σn →σ :=
√
E
[
W 2(WAP−P )2

]
,

limsup
n≥1

E

[∣∣∣∣ Z n −E [Z n]

σn

∣∣∣∣2+κ]
<∞.

This leads to

P
(p

n(ŴAPn −WAP) ≤ x
)→P

(
N (0,1) ≥−xE [W ]

σ

)
,

and the convergence (2.10) readily follows.

A.3 Proof of Theorem 2.3

Proof of (2.13) and (2.14). We start with (2.13). We apply the Fuk-Nagaev inequality [Rio, 2017], which

states that for any set of i.i.d. centered random variables Xi ’s, we have

P

(
1p
n

n∑
i=1

Xi ≥λ
)
≤

(
κ+2

κ

)κ E
[

X κ+
]

n
κ
2 −1λκ

+exp

(
− 2λ2

(κ+2)2eκVar[X ]

)
, λ> 0, (A.8)

provided that κ> 2 and5 E
[

X κ+
]<+∞. We recall, for the sake of completeness, that the above inequality

is more accurate than the Bahr-Esseen inequality [Bahr and Esseen, 1965, Section 5] or the Markov in-

equality combined with the Burkholder inequality [Hall and Heyde, 2014, Th. 2.10].

Setting X =W (α−1{P≤y})−E
[
W (α− 1{P≤y})

]
, and using elementary computations, we obtain the follow-

ing crude upper bounds

Var[X ] ≤ [α∨ (1−α)]2E
[
W 2] and E

[
X κ
+
]≤ (2[α∨ (1−α)])κE

[
W κ

]
.

Combining (A.2) (where y = qW(α)+ xp
n

, x > 0) and Lemma A.1, observe now that Q>
n (α, x) in (2.11) is

bounded by the right-hand side of (A.8) with λ= xE [W ] fW([qW(α), xp
n

]) and the above bounds onVar[X ]

and E
[

X κ+
]
: indeed, this follows from (A.2) (where y = qW(α)+ xp

n
, x > 0) and Lemma A.1. Thus, we obtain

the claimed inequality (2.13).

5here, x+ stands for the positive part of x.
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The bound Q≤
n (α, x) = P

(
q̂W,n(α)−qW(α) ≤− xp

n

)
works similarly, using y = qW(α)− xp

n
, we skip details.

Proof of (2.15) and (2.16). In view of (A.6), (2.15) is a direct application of the Fuk-Nagaev inequality

(A.8) with

Xi =Wi (Pi −WAP− xp
n

)−E
[

W (P −WAP− xp
n

)

]
,

λ= xE [W ], and using Var[X ] ≤ E
[

W 2(P −WAP− xp
n

)2
]

, E
[

X κ+
]≤ 2κE

[
W κ|P −WAP− xp

n
|κ

]
.

The derivation of (2.16) from (A.5) is similar. Details are left to the reader.

A.4 Proof of Theorem 2.4

Proof of (2.17) and (2.18). It is an easy exercice to check that (HΓ
X) for X =W implies that ∥W ∥ΨL is finite

for any L > 0. The strategy of proof consists in deriving concentration inequalities under sub-gamma

assumptions for the renormalized sum

1p
n

n∑
i=1

(
Wi (α− 1{Pi≤y})−E

[
W (α− 1{P≤y})

])
,

in order to quantity the probability of the events (A.1) and (A.2).

Observe that we can not directly use results of [van de Geer and Lederer, 2013] because they are stated

under the assumption that

Z :=W (α− 1{P≤y})−E
[
W (α− 1{P≤y})

]
has a finite Bernstein-Orlicz norm and concentration bounds are expressed in terms of ∥Z∥ΨL . On the

one hand, the latter quantity depends on P and y . On the other hand, our goal is to express results using

∥W ∥ΨL only. Obviously, ∥∥W (α− 1{P≤y})
∥∥
ΨL

≤ [α∨ (1−α)]∥W ∥ΨL (A.9)

just using that |α− 1{P≤y}| ≤ [α∨ (1−α)], which means that bounding works well with Orlicz norm while

keeping the same bounds on norms (up to constants). But, the same bounding does not work well when

dealing with the centering term E
[
W (α− 1{P≤y})

]
. This explains why our way of proof follows slightly

different arguments. First, set

Wα,y,P :=W (α− 1{P≤y}); (A.10)

in view of (A.9), set τ := [α∨ (1−α)]∥W ∥ΨL ≥
∥∥Wα,y,P

∥∥
ΨL

. Invoking [van de Geer and Lederer, 2013, Lemma

1], we get

P

(
|Wα,y,P | > τ

(p
t + Lt

2

))
≤ 2e−t ∀t ≥ 0. (A.11)

We claim that

E
[|Wα,y,P |m

]≤ mτm2m−1 (
Γ(m/2)+LmΓ(m)

)
, ∀m ≥ 1, (A.12)
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whereΓ(.) is the usual gamma function. The proof of (A.12) is given at the end. This shows that Wα,y,P sat-

isfies conditions of the Bernstein inequality (for non-centered random variable), see [Boucheron et al., 2013,

Theorem 2.10, p.37]: for any m ∈ {2,3, . . . },

E
[|Wα,y,P |m

]≤ mτm2m−1Γ(m)
(
1+Lm)

≤ 1

2
m!

(
2τ(1+L)

)m ,

using that Γ(.) is increasing 6 on [3/2,+∞), satisfies Γ(m) = (m −1)! for m ∈N∗. Therefore, for any t ≥ 0,

P

(
1p
n

n∑
i=1

(
Wi (α− 1{Pi≤y})−E

[
W (α− 1{P≤y})

])≥ 2τ(1+L)

(p
2t + tp

n

))
≤ e−t , (A.13)

P

(
1p
n

n∑
i=1

(
Wi (α− 1{Pi≤y})−E

[
W (α− 1{P≤y})

])≤−2τ(1+L)

(p
2t + tp

n

))
≤ e−t . (A.14)

It is easy to check the following relation between non-negative t and ζ:

ζ= c

(p
2t + tp

n

)
⇐⇒ t = (ζ/c)2(√

ζ

c
p

n
+ 1

2 + 1p
2

)2 . (A.15)

Invoking (A.2) with y = qW(α)+ xp
n

(for x > 0), setting ζ :=−pnE
[
W (α− 1{P≤y})

] = xE [W ] fW([qW(α), xp
n

])

(Lemma A.1) and combining this with (A.13) and (A.15) (using c = 2τ(1+L) and τ= [α∨ (1−α)]∥W ∥ΨL )

readily leads to the announced bound (2.17).

Proving (2.18) is similar by using (A.14) and (A.1) for y = qW(α)− xp
n

(for x > 0).

Proof of (A.12). Take m ≥ 1:

E
[|Wα,y,P |m

]= m
∫ +∞

0
xm−1P

(|Wα,y,P | > x
)

dx

(set x = τ(
p

t + L
2 t ) and use (A.11))

≤ m
∫ +∞

0
τm(

p
t + L

2
t )m−1

(
1

2
p

t
+ L

2

)
2e−t dt

≤ mτm
∫ +∞

0
(
p

t +Lt )m e−t

t
dt

(use (a +b)m ≤ 2m−1(am +bm) and integrate using the Γ(.)-definition)

≤ mτm2m−1 (
Γ(m/2)+LmΓ(m)

)
.

6indeed, its logarithmic derivative, the digamma functionψ(.), is increasing and such thatψ(3/2) =−γ−2ln(2)+2 ≥ 0 where
γ is the Euler constant, see [Olver et al., 2010, Chapter 5].

28



A.5 Proof of Theorem 2.5 A PROOFS OF MAIN THEORETICAL RESULTS

Proof of (2.19). Let us begin with W ≥
n (x). In view of (A.6), set Xi = Wi (Pi − WAP− xp

n
): the triangle

inequality on Bernstein-Orlicz norm yields ∥Xi∥ΨL
≤ ∥W (P −WAP)∥ΨL +∥W ∥ΨL

xp
n

. Then, we proceed as

for the proof of (2.17)-(2.18), by replacing

τ= [α∨ (1−α)]∥W ∥ΨL by τ= ∥W (P −WAP)∥ΨL +∥W ∥ΨL

xp
n

(as a norm upper bound for random variables at hand), and by replacing

ζ= x E [W ] fW([qW(α),
xp
n

]) by ζ= xE [W ] .

This leads to the bound (2.19) for W ≥
n (x).

The proof of the bound for W ≤
n (x) is analogous, by starting from (A.5) and setting Xi =Wi (WAP− xp

n
−Pi )

for which we still have ∥Xi∥ΨL
≤ ∥W (P −WAP)∥ΨL +∥W ∥ΨL

xp
n

. Thus, the final bound for W ≤
n (x) is the

same as for that of W ≥
n (x).

A.5 Proof of Theorem 2.5

Proof of (2.20) and (2.21). Observe that under the assumption (HG
X ) with X = W , ∥W ∥ΨG is finite. In

addition, ∥∥W (α− 1{P≤y})
∥∥
ΨG

≤ [α∨ (1−α)]∥W ∥ΨG =: τ.

Using the notation (A.10) for Wα,y,P , it implies that

1 ≥ E
[

e(Wα,y,P /τ)2
]
−1 = ∑

m≥1
E
[
(Wα,y,P /τ)2m]

/m!,

hence

E
[

W 2m
α,y,P

]
≤ τ2mm!, ∀m ∈N∗.

Define W ′
α,y,P an independent copy of Wα,y,P : by Jensen inequality, we have

E
[

eλ(Wα,y,P−E[Wα,y,P ])
]
≤ E

[
eλ(Wα,y,P−W ′

α,y,P )
]

, ∀λ ∈R.

The distribution of Wα,y,P −W ′
α,y,P is symmetric, thus all odd polynomial moments are zero. For even

moments, use (a +b)m ≤ 2m−1(am +bm) to get

E
[

(Wα,y,P −W ′
α,y,P )2m

]
≤ 22mE

[
(Wα,y,P )2m]≤ (2τ)2mm!.

Therefore,

E
[

eλ(Wα,y,P−E[Wα,y,P ])
]
≤ 1+ ∑

m≥1

λ2mE
[

(Wα,y,P −W ′
α,y,P )2m

]
(2m)!

≤ 1+ ∑
m≥1

(2τλ)2mm!

(2m)!
.
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Note that (2m)!
m! =∏m

i=1(m + i ) ≥∏m
i=1(2i ) = 2mm!, thus

E
[

eλ(Wα,y,P−E[Wα,y,P ])
]
≤ ∑

m≥0

(2τ2λ2)m

m!
= e2τ2λ2

.

Therefore, the Chernoff inequality [Boucheron et al., 2013, Section 2.3] gives, for any ζ≥ 0,

P

(
1p
n

n∑
i=1

(
Wi (α− 1{Pi≤y})−E

[
W (α− 1{P≤y})

])≥ ζ)≤ e−
ζ2

8τ2 ,

P

(
1p
n

n∑
i=1

(
Wi (α− 1{Pi≤y})−E

[
W (α− 1{P≤y})

])≤−ζ
)
≤ e−

ζ2

8τ2 .

Recalling τ = [α ∨ (1 − α)]∥W ∥ΨG , using (A.2) with y = qW(α) + xp
n

(for x > 0) and setting

ζ := −pnE
[
W (α− 1{P≤y})

] = E [W ] x fW([qW(α), xp
n

]) (Lemma A.1) readily leads to the announced bound

(2.20).

Proving (2.21) is similar by using (A.1) with y = qW(α)− xp
n

(for x > 0).

Proof of (2.22). We follow the arguments used before for establishing (2.20) and (2.21). Consider first

the bound on W ≥
n (x), which is expressed as (A.6). A quick inspection of the previous proof based on

Chernoff inequality shows that it suffices to replace τ = [α∨ (1−α)]∥W ∥ΨG by τ = ∥W (P −WAP)∥ΨG +
∥W ∥ΨG

xp
n

, and ζ= E [W ] x fW([qW(α), xp
n

]) by ζ= xE [W ] . The bound for W ≥
n (x) readily follows. The anal-

ysis for W ≤
n (x) is similar and we skip it.
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